J. Fluid Mech. (2006), vol. 558, pp. 79-102.  (© 2006 Cambridge University Press 79
doi:10.1017/S002211200600989X  Printed in the United Kingdom

Wall pressure fluctuations and flow-induced
noise in a turbulent boundary layer over a bump

By JOONGNYON KIMAND HYUNG JIN SUNGT

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology,
373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea

(Received 18 February 2005 and in revised form 28 November 2005)

Direct numerical simulations of a turbulent boundary layer over a bump were
performed to examine the effects of surface longitudinal curvature on wall pressure
fluctuations (p,,) and flow-induced noise. Turbulence statistics and frequency spectra
were obtained to elucidate the response of wall pressure fluctuations to the longitudinal
curvature and to the corresponding pressure gradient. Wall pressure fluctuations were
significantly enhanced near the trailing edge of the bump, where the boundary layer
was subjected to a strong adverse pressure gradient. Large-scale structures in the
distribution of wall pressure fluctuations were observed to grow rapidly near the
trailing edge of the bump and convect downstream. Acoustic sources of the Lighthill
equations were investigated in detail at various longitudinal surface curvatures. The
acoustic sources (S) were highest near the trailing edge of the bump, where the
root mean square wall pressure fluctuations were greatest. The maximum correlation
coefficient between p, and S was located just above the location of maximum wall
pressure fluctuations. Far-field acoustic density fluctuations were computed using the
Lighthill acoustic analogy. We found that the surface dipole is dominant in the total
acoustic field. The contribution of the volume quadrupoles to the total acoustic field
gradually increases with increasing radius of the surface curvature (§/R).

1. Introduction

The turbulent boundary layer of a flow passing over a bump exhibits extremely
complex flow characteristics, despite the relatively simple geometry of this system. A
model surface bump can be constructed from three tangential circular arcs, as shown
in figure 1. When the flow impinges on this bump, the boundary layer experiences
a short region of concave surface, a longer region of convex surface, another short
region of concave surface, and then returns to the flat plate. As a result of this
geometry, the streamwise pressure gradient changes from adverse to favourable in
the region upstream of the bump apex. Downstream of the bump apex, the boundary
layer is subjected to an adverse pressure gradient before returning to a favourable
pressure gradient over the flat plate. Thus, if we are to design an effective strategy
for controlling the noise generated by such flows, a clear understanding of the effect
of the longitudinal surface curvature and the associated pressure gradient is essential.
One practical example in which such knowledge is vital is noise generation caused by
flow over sonar transducers mounted on ships or submarines.
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FIGURE 1. Schematic diagram of the flow geometry. (a) Top view of the computational
domain; (b) side view of the computational domain.

A response to perturbations in both surface curvature and pressure gradient has
been the subject of several investigations (Baskaran, Smits & Joubert 1987; Webster
DeGraaftf & Eaton 1996; Wu & Squires 1998). It is known that an internal layer is
triggered by the discontinuity in longitudinal surface curvature. The internal layer
is shown by knee points in the profiles of turbulence intensity. Baskaran et al.
(1987) observed the formation of an internal layer at the discontinuity in the surface
curvature and the subsequent growth of this layer over the convex surface. The
streamwise turbulence intensity is significantly increased in the internal layer rather
than in the outer layer. Most of the flow behaviour and internal layer could be
accounted for in terms of pressure gradient effects (Webster et al. 1996). Wu &
Squires (1998) suggested that the abrupt increase of skin friction caused by the
presence of a pressure gradient enhances near-wall turbulence stresses and plays a
key role in the formation of the internal layer.

Wall pressure fluctuations, which are directly related to the surface excitation force,
are associated with flow unsteadiness and noise generation in the immediate vicinity
of the wall. A knowledge of these quantities is of prime importance in understanding
the dynamic behaviour of wall turbulent flow. The majority of previous studies on
wall pressure fluctuations have focused on the equilibrium turbulent boundary layers
over flat plates or inside channels (Kim, 1989; Choi & Moin 1990; Kim, Choi &
Sung 2002). Recent advances in direct numerical simulation (DNS) have intensified
interest in calculating wall pressure fluctuations in non-equilibrium turbulent flows.
Neves & Moin (1994) examined the effects of convex transverse curvature on wall
pressure fluctuations in axial-flow boundary layers. They found that root mean square
(r.m.s.) wall pressure fluctuations decrease with increasing transverse curvature. In a
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study of the effects of separation on wall pressure fluctuations, Na & Moin (1998)
observed large two-dimensional roller-type structures inside a separation bubble. Kim,
Kim & Sung (2003) investigated the characteristics of wall pressure fluctuations after
a sudden application of wall blowing or suction. They showed that blowing has
a greater effect than suction on wall pressure fluctuations. However, the effects of
longitudinal surface curvature and the associated pressure gradient on wall pressure
fluctuations have yet to be established.

The mechanism of aerodynamic noise generation by a turbulent shear flow has
been a subject of great interest since Lighthill first formulated a general theory for
the aeroacoustic noise (Lighthill 1952). When a flow encounters a solid body, Curle’s
integral solution (1955) to the Lighthill equation provides a theoretical framework
for predicting the noise generated by the flow—body interaction. According to the
extension of Lighthill’s formalism by Powell (1960), fluctuating velocities produce
quadrupole noise sources, whereas fluctuating wall shear stresses take the form of
dipole sources. Thus, when an infinite surface plate boundary layer is assumed, the
most important dipole source term, that from wall pressure fluctuations, is eliminated
by reflection from the surface plate. However, in the present study, we found that
the acoustic sources of the Lighthill equations without consideration of wall pressure
fluctuations where closely correlated with the distribution of wall pressure fluctuations.
Here we endeavour to develop a quantitative description of the relationship between
wall pressure fluctuations and acoustic sources.

The main objective of the present study was to investigate the effects of longitudinal
surface curvature and the associated pressure gradient on wall pressure fluctuations
and flow-induced noise. To achieve this, we performed DNSs of a turbulent boundary
layer over a bump. Turbulence statistics and frequency spectra of wall pressure
fluctuations were extracted using standard techniques for analysing stochastic data.
In addition, two-point correlation coefficients were used to deduce the spatial structure
of the wall pressure fluctuations. Acoustic sources of the Lighthill equations were
investigated in detail as a function of longitudinal surface curvature. A quantitative
statistical description of the relationship between wall pressure fluctuations and
acoustic sources was formulated in terms of the correlation coefficient. Far-field
acoustic density fluctuations were computed using the Lighthill acoustic analogy.

2. Direct numerical simulation

For an incompressible flow, the non-dimensional governing equations are
ou; 0 op 1 0 du;

ot " ax," ™ T Tax T Redx, ox,

ou;

Xx;

(1)

=0, )

where x; are the Cartesian coordinates and u; are the corresponding velocity com-
ponents. All variables are non-dimensionalized by a characteristic length and velocity
scale, and Re is the Reynolds number.

By introducing generalized coordinates n’, the velocity components u; are trans-
formed into the volume fluxes across the faces of the cell ¢' or g. Formulation
of the problem in terms of the contravariant velocity components, weighted with
the Jacobian J in conjunction with the staggered variable configuration, leads to
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Case 8/R 8/h R/L. r/L.
1 0.015 3.0 4.64 0.92
2 0.030 1.5 2.32 0.46
3 0.045 1.0 1.56 0.31

TaBLE 1. Comparison of bump parameters.
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FIGURE 2. Comparison of —, calculated mean wall pressure with @, the experimental data
(Webster et al. 1996).

discretized equations. The transformed governing equations are rewritten as

94’ . . . .
aq; + N'(g) = —G'(p) + Li(q) + Li(q). (3)
.. 1 [dq"  9q? aq*
Dig = — = _1 — =90 4
J J<8771+8n2 +55 =0, 4)

where N' is the convective term, G'(p) is the pressure gradient term, L} and L} are the
diffusion terms without and with cross-derivatives, and D' is the divergence operator.
More details can be found in Choi, Moin & Kim (1993). The governing equations are
integrated in time using the fully implicit fractional-step method proposed by Choi &
Moin (1994). The fractional step is a method of approximation of the governing
equations based on the decomposition of the operators. In applying this method to
the Navier—Stokes equations, we can interpret the role of pressure in the momentum
equations as a projection operator, which projects an arbitrary vector field into
a divergence-free vector. A second-order central difference scheme is used for the
spatial derivatives and a Crank—Nicolson method is employed in time advancement.
The discretized nonlinear momentum equations are solved by using a Newton iterative
method. Solving the Poisson equation for p satisfies the continuity equation.

Table 1 gives the bump parameters used in the present work. In the present
DNS, we specified the bump parameters so that the streamwise distribution of the
computed wall pressure coefficient for §/R =0.015 matched well with that of Webster
et al. (1996) (figure 2). Here, § is the boundary-layer thickness and R is the radius
of convex curvature. Because the Reynolds number considered in the present DNSs
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Ficure 3. Comparison of turbulence statistics: (a) mean velocity profile; (b) turbulence
intensities and Reynolds shear stress. —, present; O, Spalart (1988).

was smaller than those of previous studies, a smaller curvature parameter (§/R) was
used in the present work. Bradshaw (1973) demonstrated that a convex curvature of
8/R =0.01 significantly reduced the skin friction coefficient compared to that over a
flat plate. Taking into consideration this finding, the bump used in the present work
is expected to affect the turbulent boundary layer significantly. The surface bump
has two discontinuities in surface curvature: the concave-to-convex surface near the
leading edge and the convex-to-concave surface near the trailing edge. Note that,
at both of these discontinuities, the bump used in the present work has a value of
Ak*=15.52 x 107, which satisfies the criterion Ak* >0.37 x 10~* for the formation of
an internal layer (Baskaran et al. 1987). Here, Ak* =(1/R, —1/R;)v/u, where R; and
R, are upstream and downstream radii of curvature, respectively.

In the DNSs, time-dependent turbulent inflow data were provided at the inlet based
on the method of Lund, Wu & Squires (1998). Using this approach, instantaneous
planes of velocity data were extracted from an auxiliary simulation of a spatially
developing turbulent boundary layer over a flat plate. A plane velocity field near the
domain exit was modified by the rescaling procedure and reintroduced to the inlet of
the computational domain in the inflow-generation simulation. The main simulation
of a turbulent boundary layer over a bump was then carried out. The convective
boundary condition imposed at the exit had the form (du;/9t) + c¢(du;/9x) =0, where
¢ is the local bulk velocity. A no-slip boundary condition was imposed at the solid
wall, and the boundary conditions on the top surface of the computational domain
were du;/dy =0, u; =0 and u3 =0. Periodic boundary conditions were applied in the
spanwise direction.

To ascertain the reliability and accuracy of the present numerical simulation,
comparisons of the turbulence statistics with the DNS data of Spalart (1988) are
made and presented in figure 3. The mean velocity profile normalized by the friction
velocity is shown in figure 3(a), where y™ = yu./v and Ut = U /u,. Comparisons are
extended to the turbulence intensities and Reynolds shear stress in figure 3(b). The
present results are in excellent agreement with the DNS data at the same Reynolds
number. This suggests that the resolution of the present study is sufficient to analyse
the second-order turbulence statistics.

The computational domain size was L, =240, L, =45 and L,=40. The inlet
Reynolds number based on the inlet momentum thickness (6y) and free-stream velocity
(Uy) was Re=300. The mesh contained 257 x 97 x 129 points in the streamwise,
wall-normal, and spanwise directions, respectively. Non-uniform grid distributions
were used in the streamwise and wall-normal directions, whereas a uniform grid
distribution was used in the spanwise direction. The computational grid was generated
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using the direct distribution control technique of Thomas & Middlecoff (1980). The
computational time step used was Atr=0.36y/U, and the total averaging time to
obtain the statistics was 7;,, = 5000 v/u?, where v and u, are the kinematic viscosity
and the friction velocity, respectively. A streamline-normal coordinate system (s, n, z)
was used for post-processing, where the n-axis is perpendicular to the lower surface
in figure 1(b). The corresponding velocity components in (s, n, z) are denoted by
(s, u,, u;). A normalized streamwise coordinate, x'=(x — x¢)/L., was also used,
where xy corresponds to the leading edge of the bump and L. is the bump length.
In the x’-coordinate system, x’ =0 coincides with the leading edge, x'=0.5 with the
bump apex and x’' = 1.0 with the trailing edge.

3. Aeroacoustic theory

From the Lighthill acoustic analogy (1952), the concentrated unsteady flow region
is the aeroacoustic source region, which can be obtained from an incompressible
DNS. The density fluctuations due to propagation of an acoustic wave from the
aeroacoustic source region are governed by an inhomogeneous wave equation, which
can be written in the following form:

?p 1 3p Ty

ZrF L = , 5
8[2 M2 8xi8xj Bxiaxj ( )
where
Tij = puju’; +8ij(p — p/M?) — 1, (6)
1 (Qu, duly 2  Qu
= = ! — *6,"7 . 7
il Re<8xj + ax; 3 jaxk) @

Equation (5) is a restatement of the Lighthill equation in terms of the values relative
to the free-stream values. Equation (6) is the Lighthill stress tensor composed of
three terms, and (7) is the viscous part of the Stokes stress tensor. All variables
are non-dimensionalized by a characteristic length and velocity scale, and Re is the
Reynolds number.

When the reference frame is fixed on the moving solid boundary, Curle’s solution
(1955) of the Lighthill acoustic analogy can be applied. Curle showed that the general
solution for the flow past a rigid surface can be written as:

2 2 2
M? 9 /S"fw 2, M9 /V Tt =M1 450 (g

e — d —_—
4n Bx,- y+ 4 8)(,'8)(]'

p(xvt) —1

where X is an observation point position vector, Yy is a source point position vector,
r=|X—Yl, P;j=péij — v, and n; is the directional cosine of the outward normal to
the rigid surface.

Powell (1960) pointed out that for flow past an infinite plane surface, we can
consider a new extended flow field obtained by reflection of the original one in the
plane y =0, which gives an identical acoustic field. Based on the result of Powell, the
acoustic density in the upper half-plane can be written as:

MZB ,I—M M2 82 Tl ,Z—M
plx,t)— 1= /W”dz L / iy r) &y
4m dxe Js r 4r 9x;0x; Jy r
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where k=1, 3 and X" is the image of position X in the rigid surface x, =0. Note that
reflection at an infinite surface plate boundary layer thus eliminates the dipole source
term arising from wall pressure fluctuations. When the distance between observation
and source points is larger than the acoustic wavelength, the far-field approximation
can be applied. Also, when the solid body and the source region are smaller than the
typical acoustic wavelength, the source region is acoustically compact. The acoustic
density at the far field generated from a compact source region can be approximated
by

M3 x; 9
B e 1 — Mr)d?
p(x, 1) o kP 8t/sfk2(y r)d”y
M* xix; + xixj 9
— L | Ti(y,t —Mr)d’y, 10
i 3t2/v i(y r)d’y (10)

which includes two typical noise source functions, a surface dipole and a volume
quadrupole, which are generated from the surface of the rigid wall and the entire
unsteady flow region, respectively. The acoustic density at the far field generated by
a compact source region is rewritten as:

M3 x . M*xix; +x]x7 ..
—1=— M pr—Mr)+ TG — M), 11
p(x t) o |x|2 k([ V)+ 4t |x|3 Qj( 1") ( )
where
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are dipole and quadrupole sources, respectively. The residual effect at the exit
boundary is eliminated by using the following corrective formula derived by Wang,
Lele & Moin (1996),

0 = 0y + Fy. (14)
where the dots denote time derivatives and F;; is the flux of Lighthill stress components
(Wang et al. 1996).

4. Results and discussion
4.1. Mean wall pressure and wall pressure fluctuations

Before proceeding further, it would be advantageous to see the variation in the mean
wall pressure along the wall. Figure 4(a) shows the streamwise distribution of the wall
pressure coefficient (C,). The boundary layer initially develops under a zero pressure
gradient at the inlet, after which the streamwise pressure gradient becomes mildly
adverse over the upstream flat plate. The boundary layer then experiences a short
region of concave curvature before encountering a region of convex curvature. The
corresponding pressure gradient changes from adverse to favourable. Downstream of
the bump apex, the streamwise pressure gradient is strongly adverse then changes to
mildly favourable over the exit flat plate.
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FIGURE 4. Streamwise distribution of (¢) mean wall pressure coefficient and (b) pressure
gradient parameter.

Figure 4(b) shows the distribution of the non-dimensional pressure gradient
parameter P*, which is given by

v Ld<pw>.

~pud ds (15)

Here u, is the friction velocity and the brackets indicate an average over the spanwise
direction and time. For §/R =0.015, P* changes sign at three streamwise locations,
x"=0.038, 0.52 and 1.04. Thus, the computational domain can be divided into four
streamwise regions according to the sign of the streamwise pressure gradient. Notably,
in the range of 0.78 < x’ < 1.02, P* exceeds the value of 0.09 suggested by Patel (1965)
as the threshold value above which separation processes occur. In this region, which
is the zone of strong adverse pressure gradient, the boundary layer experiences
intermittent reversal and separation in the vicinity of the wall. This region of strong
adverse pressure gradient expands with increasing §/R.
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FIGURE 5. Streamwise distribution of (a) skin friction coefficient and (b) r.m.s. wall pressure
fluctuations.

The distribution of the skin friction coefficient, C; =1, /(pU2/2), is shown in
figure 5(a). Relative to C, at the inlet, C, decreases when the boundary layer is
subjected to an adverse pressure gradient, but increases in regions of favourable
pressure gradient. Near the flat-to-concave transition, C, increases rapidly in the
region where the pressure gradient decreases. A rapid increase in C; also occurs near
the trailing edge of the bump. As pointed out by Wu & Squires (1998), this latter
change in C, can be regarded as evidence of internal layer generation at a curvature
discontinuity. The locations of zero wall shear stress are x’ =0.78 and x’' =1.01 for
8/R =0.030, and x’ =0.68 and x’=1.06 for §/R =0.045. Since detachment is related
to the streaky structures from upstream of the bump apex, the location at which
detachment occurs is more variable than that of reattachment.

The streamwise distributions of r.m.s. wall pressure fluctuations (p,,),ns normalized
by the reference dynamic pressure g, =pUZ2/2 are displayed in figure 5(b). Two
peaks are observed for all cases. The locations of these peaks, x'=0.07 and
x"=1.0, approximately coincide with the concave-to-convex and concave-to-flat
surface transitions, respectively. Over the downstream of the bump apex, (py)ms begins
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FIGURE 6. Side view of instantaneous velocity vectors in the (x, y)-plane for §/R = 0.030.
(a) tUy /60 =0; (b) tUy /60 = 30.

to increase near x'=0.8(§/R=0.030) and x'=0.7(§/R =0.045), where the pressure
gradient parameter (PT) exceeds the value of 0.09. Figure 6 shows instantaneous
velocity vectors in the (x, y)-plane at the middle of the spanwise domain at two
different instants. Comparison of the two velocity vector distributions shows that
the instantaneous separation bubbles and associated shear layers change over time.
The detachment and reattachment regions move up- and downstream, indicating the
highly unsteady nature of the flow near the trailing edge of the bump.

Figure 7 shows contour maps of the instantaneous skin friction coefficient for
surface curvatures of §/R=0.015, 0.030 and 0.045. Solid and dotted lines denote
positive and negative C , respectively. As the turbulent boundary layer moves through
a region of adverse pressure gradient near the trailing edge of the bump, the flow
decelerates until some reversal flow occurs. Close inspection of figure 7 reveals that
the streaky structures disappear after the detachment region. The spanwise lines of
detachment are related to the low-speed streaks that come from upstream of the
bump. Small-scale structures are generated near the trailing edge of the bump and
the low-speed streaks are completely destroyed.

To examine the spectral features of the wall pressure fluctuations, the frequency
spectra of p, are obtained using standard techniques for stochastic data. The wall
pressure fluctuations p,(x, z, t) are Fourier-transformed in the spanwise direction and
time. Letting p,(x, k;, ®) be the discrete Fourier transform of p,(x, z, t), the power
spectral density is computed by

¢(kzva);x): <ﬁw(xskz’w)ﬁ:)(x’ksz»’ (16)

where * denotes the complex conjugate and the angle brackets indicate an average
over the spanwise direction and time. The dependence of the spectral density on
the streamwise location x is considered to be due to the flow inhomogeneity. The
pressure spectra have been computed by using the ensemble average of the windowed
part of the signal. The power spectral density @(k,, w;x) is computed from the
discrete Fourier transform of p,(x, z, t). The frequency spectra ¢(w;x) are obtained
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FiGure 7. Top view of instantaneous skin friction coefficient in the (x, z)-plane.
(a) 8/R=0.015, Case 1; (b) /R =0.030, Case 2; (c) §/R =0.045, Case 3.

by integrating @ (k,, w; x) over k,. Each spectrum presented in this paper is normalized
such that its integral is equal to the mean-square of the wall pressure fluctuations.

The spectra normalized by the outer variables are illustrated in figure 8. For
8/R=0.015 (figure 8a), the spectra converge in the high-frequency region. For
0.4<wby/U,, the spectra decrease with a slope of about —5. The computed
spectra decay faster than a —3 slope which is observed experimentally by Simpson,
Ghodbane & McGrath (1987). This might be partially due to the low Reynolds
number and partially due to the effects of the second-order finite-difference spatial
discretization used in the present study (Na & Moin 1998). The pressure spectra shows
a negligible region with a slope of —1, which arises from the contribution of motions
in the logarithmic region. Since the Reynolds number considered in the present study
is relatively low, the logarithmic region is not well defined. The frequency spectra for
8/R =0.030 and 0.045 are presented in figures 8(b) and 8(c), respectively. Any spectra
scaled for the present turbulent boundary layer over a bump do not converge in
the presence of a pressure gradient. This is because that the dynamic pressure is no
longer an important parameter in boundary layers with a pressure gradient.

The spatial characteristics of the wall pressure fluctuations are obtained from the
two-point correlations as a function of the streamwise spatial (Ax) and temporal (Af)
separations,

(Pu(x, 2, )pu(x + Ax, z,t + At))
(pw)rms(xv Z7 t)(pw)rms(x —"_ Ax? Z! t —"_ At) ’

where the angle brackets indicate an average over the spanwise direction and time.
Again, the dependence on the streamwise location x is considered to be due to the
flow inhomogeneity. Contour maps of the two-point correlation for all cases at two
streamwise locations are presented in figure 9, where the contour levels are from
0.1 to 0.9 in increments of 0.1. To facilitate comparison, the spatial separations are

Ryp(Ax, At;x) =

(17)
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Ficure 8. Frequency spectra of wall pressure fluctuations with outer variable scaling:
(a) §/R=0.015; (b) §/R=0.030; (c) §/R=0.045.
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FIGURE 9. Two-point correlation coefficient of wall pressure fluctuations as a function of
streamwise spatial and temporal separations: (a) x’ =0, leading edge; (b) x'=12/12, trailing
edge.

normalized by the inlet momentum thickness. The strong convective nature of the
wall pressure fluctuations is reflected in the concentration of the contours into a band.
The convection velocity is denoted by the slope Ax/At. The convection velocity of
large eddies is higher than that of small eddies, as indicated by a slightly higher
value of the slope Ax/At. Figure 9 shows that the wall pressure field loses coherence
as convection proceeds and as surface curvature increases. Note that the contour
plot shows a slightly tilted shape at x'=12/12, indicating that the wall pressure
fluctuations do not proceed further downstream.

Figure 10 shows the two-point correlation of the wall pressure fluctuations as a
function of the spanwise spatial and temporal separations,

(pu(x,z,0)pu(x, 2+ Az, t + A1)

R,,(Az, At;x) = s
PP( ) (pw)rms(xy 2, t)(pw)rms(xa Z+ Azt + At)

(18)
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FiGURE 10. Two-point correlation coefficient of wall pressure fluctuations as a function
of spanwise spatial and temporal separations: (a) x' =0, leading edge; (b) x' =12/12, trailing
edge.

Here, the brackets indicate an average over the spanwise direction and time. The
contour levels are from 0.1 to 0.9 in increments of 0.1. Compared to the contours
at x’=0, the contours near the trailing edge of the bump are elongated along the
spanwise direction and are more separated for all cases. The spanwise extent of the
widest contour (contour level 0.1) increases up to x'=12/12, at which (p,).ms has
a maximum value. This indicates that the spanwise integral length scale of the wall
pressure fluctuations increases. The results obtained by examining the correlation
coefficients thus reveal a two-dimensional structure of wall pressure fluctuations near
the trailing edge of the bump.

4.2. Flow noise source and far-field noise
Lighthill’s equation for acoustic density fluctuations can be rewritten as,
Po 1 o
32 M2 axdx;

(19)
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Ficure 11. Distribution of instantaneous acoustic source in the (x, y)-plane: (a) §/R =0.015;
(b) §/R=0.030; (c) /R =0.045.

where
2

h axiaxj
is the nominal acoustic source. The acoustic source is small near the leading edge
of the bump, which is not shown here. Contour maps of the instantaneous acoustic
source near the trailing edge of the bump are shown in figure 11. It is seen that large
acoustic sources are located near the trailing edge of the bump, where the streamwise
pressure gradient is strongly adverse. The source term S becomes small again by
x"=1.5. The strength of the acoustic source increases with increasing the radius of
surface curvature §/R.

Contour maps of the r.m.s. acoustic source calculated using (20) are shown in
figure 12. Similar to the behaviour of the instantaneous acoustic source (figure 11),
the r.m.s. acoustic source S is small near the leading edge of the bump and bump apex,
and reaches a maximum near the trailing edge of the bump. Comparison of figures 12
and 5(b) indicates that the location of the dominant acoustic source qualitatively
coincides with the location where the wall pressure fluctuations are greatest. This
suggests that wall pressure fluctuations are closely correlated with acoustic sources.
Such a correlation between acoustic sources and wall pressure fluctuations would call
into question the validity of eliminating the dipole source term coming from wall
pressure fluctuations in the acoustic source of Lighthill’s equations (Powell 1960). A

{P“;“; +5ij(p_10/M2)_Tij}a (20)
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FIGURE 12. Contours of r.m.s. acoustic source in the (x, y)-plane: (a) §/R =0.015;
(b) 8/R=0.030; (c) /R =0.045.

more quantitative description of the relationship between wall pressure fluctuations
and acoustic sources is presented in figure 14.

To obtain further insight into the acoustic source S, profiles of the acoustic source
were examined (figure 13a). For the boundary layer over a flat plate (§/R=0), S
has the largest r.m.s. value near y* =20, which corresponds to the average location
of the centre of the streamwise vortices near the wall. Note that for §/R =0.030, S
is maximum in the viscous sublayer near y*=135; this maximum in § is probably
related to the generation of the internal layer, which is known to be triggered at
discontinuities in the surface curvature (Baskaran et al. 1987; Webster et al. 1996). A
closer inspection of figure 13(b) discloses that the large terms in the viscous sublayer
for §/R =0.030 are Sy, and Ss3, owing to the high turbulence intensities in the wall-
normal and spanwise directions, respectively. In sum, the internal layer with strong
adverse pressure gradient that forms as a result of the discontinuity in the surface
curvature is responsible for the increased acoustic source generation observed near
the trailing edge of the bump.

A quantitative statistical description of the relationship between wall pressure
fluctuations p,, and acoustic source S is obtained from the correlation R,s(Ax, Ay,
Az) and its corresponding coefficient R),s(Ax, Ay, Az), which are defined as

RPS(A'X’ Ay? AZ) = <p(.)C0, 01 <, I)S(XQ + Axv Ay7 z+ AZ’ t)>’ (21)
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FIGURE 13. Profile of r.m.s. acoustic source at x’=1.0. (a) Total source; (b) §/R =0.030.

and
pS(Ax, Ay» AZ)

Prms Sems

respectively. The angle brackets denote an average over the spanwise direction and
time. Using the DNS database for a flat plate turbulent boundary layer (Kim et al.
2002), the correlation and its corresponding coefficient are obtained at the centre of
the computational domain in a turbulent boundary layer with zero pressure gradient.
A typical isosurface of the large magnitude of R),¢(Ax, Ay, Az) is shown in figure 14.
The values of 0.1, approximately 50 % of the maximum magnitude, have been
chosen arbitrarily to define the iso-surfaces. Figure 14 exhibits highly correlated
acoustic sources upstream of the location at which the wall pressure fluctuations are
obtained.

The contour lines of R)(Ax, Ay, Az) in the (y,z),(x,z) and (x, y)-planes are
shown in figure 15. The contour levels span from —0.2 to 0.2 in increments of 0.02,
and negative correlations are indicated by dashed contours. In the contour map
in the (y, z)-plane (figure 15a), the maximum correlation coefficient occurs directly
above the location of maximum wall pressure fluctuations. Note that no spanwise

, R
R,s(Ax, Ay, Az) =

: (22)
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FiGURE 14. Iso-surfaces of correlation coefficient between wall pressure fluctuations and
acoustic source.

displacement is observed at Ayt =20 (figure 15b), indicating that the strongest
correlation coefficients in the vicinity of the wall are observed directly above the
locations of the maximum wall pressure fluctuations. Figure 15(c) shows that the
location of the maximum correlation coefficient moves away from the wall with
increasing Ax™. This confirms the existence of a tilted structure in the vicinity of the
wall. It is seen that the y™ location of the maximum correlation coefficient increases
from yt =15 at AxT=-50 to y* =20 at AxT=—10, which gives a tilt angle of
about 7.13°. There is a correlation between wall pressure fluctuations and streamwise
vortices (Kim et al. 2002). Owing to this relationship, the y* location of the maximum
correlation coefficient gives a tilt angle.

Figures 16-19 show contours of the far-field acoustic density fluctuations for
8/R=0.0, 0.015, 0.030 and 0.045, respectively. The contour levels range from
—5x 107" to 5 x 107! in increments of 2.5 x 107'2, and contours of negative values
are dashed. It is worth pointing out that the extremely small contour levels result
from the M* and M? factors in (10). In the present calculation, based on the acoustic
analogy, sufficient arithmetic precision is maintained since the far-field and near-field
acoustic densities are evaluated separately. The volume quadrupole contribution to the
total acoustic density propagation is O(M*), whereas the surface dipole contribution
is O(M?). Thus, the effect of the quadrupole source on the far-field acoustic density
fluctuations is smaller than that of the dipole source at low Mach numbers. For
8/R =0.0, it is clearly shown in figure 16 that the total acoustic field has dipole-like
characteristics.

The contribution of the volume quadrupoles to the total acoustic field gradually
increases with increasing §/R. The role of the volume quadrupole for §/R=0.030
(figure 18) is more important than that for §/R =0.015 (figure 17). As can be clearly
seen in figure 19, the contribution of the volume quadrupole for §/R =0.045 is much
larger than the contributions for other cases. We can conclude from the acoustic
field results that the total acoustic field shows dipolar characteristics for §/R =0.0,
0.015 and 0.030 (figures 16-18), whereas quadrupolar characteristics appear in the
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total acoustic field for §/R =0.045 (figure 19). Therefore, the contribution of the

quadrupole source increases with increasing §/R.

5. Conclusions

A detailed numerical analysis of flow past a surface bump has been performed to
scrutinize the effects of longitudinal surface curvature on wall pressure fluctuations
and flow-induced noise. Statistical descriptions of the wall pressure fluctuations were
obtained by performing DNSs of a turbulent boundary layer over a bump. The skin
friction coefficient C; decreases when the boundary layer is subjected to an adverse
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FiGURe 16. Contours of acoustic density fluctuations at M =0.01 for §/R =0.0:
(a) quadrupole; (b) dipole; (c) total.

pressure gradient, but increases under favourable pressure gradients. Wall pressure
fluctuations are significantly enhanced near the trailing edge of the bump, where
the boundary layer is subjected to a strong adverse pressure gradient. Large-scale
structures in the distribution of wall pressure fluctuations were observed to grow
rapidly near the trailing edge of the bump and convect downstream. The spanwise
integral length scale of wall pressure fluctuations increases near the trailing edge of
the bump. Acoustic sources of the Lighthill equations S near the leading edge are
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FiGURE 17. Contours of acoustic density fluctuations at M =0.01 for §/R =0.015:
(a) quadrupole; (b) dipole; (c) total.

smaller than those near the trailing edge of the bump. Large acoustic sources are
located near the trailing edge of the bump, where the streamwise pressure gradient is
strongly adverse. The strength of the acoustic source increases with increasing radius
of surface curvature §/R. The internal layer triggered by the discontinuity in surface
curvature near the trailing edge of the bump is responsible for increased acoustic
source generation in this region. The strongest correlations between p, and S in
the vicinity of the wall are observed directly above the locations of maximum wall
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FiGure 18. Contours of acoustic density fluctuations at M =0.01 for §/R =0.030:
(a) quadrupole; (b) dipole; (c) total.

pressure fluctuations. Such a correlation between acoustic sources and wall pressure
fluctuations would call into question the validity of eliminating the dipole source term
coming from wall pressure fluctuations in the acoustic source of Lighthill’s equations.
The effect of the quadrupole source on the far-field acoustic density fluctuations is
smaller than that of the dipole source. The contribution of the volume quadrupoles
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FIGURE 19. Contours of acoustic density fluctuations at M =0.01 for §/R =0.045:
(a) quadrupole; (b) dipole; (c) total.

to the total acoustic field gradually increases with increasing radius of the surface
curvature 6/R.
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